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Scaling of level statistics and critical exponent of
disordered two-dimensional symplectic systems
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† Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
‡ Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, D-20355 Hamburg,
Germany

Received 30 May 1997

Abstract. The statistics of the energy eigenvalues at the metal–insulator transition of a two-
dimensional disordered system with spin–orbit interaction is investigated numerically. The
critical exponentν is obtained from the finite-size scaling of the numberJ0 which is related to
the probabilityQn(s) of having n energy levels within an interval of widths. In contrast to
previous estimates, we findν = 2.32± 0.14 close to the value of the two-dimensional quantum
Hall system.

Despite considerable efforts the understanding of the critical behaviour at the disorder
driven metal–insulator transition (MIT, Anderson transition) in disordered systems is still
incomplete. Present day analytical theories are not able to provide quantitative results of
physical quantities which describe the universal properties in the vicinity of the critical point.
Therefore, our current knowledge mainly originates from numerical investigations using
transfer-matrix approaches and Green function techniques (see e.g. [1]). Recently, the energy
level statistics has proven to be another powerful method to elucidate the peculiar spectral
correlations and to calculate the non-trivial exponents that govern the non-conventional
dynamics [2, 3, 4, 5] that are related to the multifractal properties of the corresponding
eigenstates.

In particular, the energy level spacing distributionP(s) is a simple tool to distinguish
between localized and extended states, and also reflects the respective symmetry of the
model system under consideration. Here,s = |E − E′|/1 is the energy separation of
two consecutive eigenvaluesE and E′ divided by the mean level spacing1. On the
metallic side of the MIT, random-matrix theory (RMT) serves as an adequate description.
However, in approaching the transition, novel critical level statistics have been found in
three-dimensional (3d) [6, 7, 8, 9, 10] and two-dimensional (2d) [11, 12, 13, 14] systems.
For small level separations,s, these criticalPc(s) still resemble the RMT result,P(s) ∼ sβ ,
indicating strong level repulsion, while for large spacings a behaviour,P(s) ∼ exp(−κs),
similar to the uncorrelated Poisson statistics of the localized states is observed. Previously,
we have found the size-invariantPc(s) for 2d symplectic [11] and QHE systems [14] with
κ ≈ 4.0, and for 3d orthogonal and unitary models [9] whereκ ≈ 1.9 was obtained.

A disorder driven metal–insulator transition is observed in 3d for each possible symmetry
class: orthogonal (β = 1), unitary (β = 2) and symplectic (β = 4). In non-interacting
2d systems, however, in the presence of both time-reversal and spin-rotational symmetry
(orthogonal) all states are believed to be localized for any disorderW > 0. The same holds
also in the absence of time-reversal symmetry (unitary), but singular energies are present in
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strong magnetic fields where the localization length diverges leading to the quantum Hall
effect.

The only complete MIT in 2d is found for symplectic systems that possess time-reversal
but no spin-rotational symmetry. Therefore, the symplectic model is of particular interest
for developing analytical theories and the knowledge of characteristic physical quantities
is of importance. Yet, there is no consensus about the magnitude of the universal critical
exponentν that governs e.g. the divergence of the localization length,ξ(E) ∼ |E−E0|−ν , at
the MIT, whereas the valueν ≈ 2.35 for the QHE case is commonly accepted [15, 16, 17].
The proposed values for the symplectic system have been found by using the transfer matrix
method. They are scattered over a wide range:ν = 2.05± 0.08 atWc/V = 5.875± 0.010
[18, 19],ν = 2.75±0.15 atWc/V = 5.74±0.03 [20, 21], andν = 2.5±0.3 for a different
model [12]. All suggestedν-values are clearly different from the QHE case which is
contrary to the observed closeness of the generalized fractal dimensionsD(q) in symplectic
and QHE systems [22]. Since several recent investigations (e.g. [11, 22, 23, 24]) at the
MIT were performed taking the numbers (ν = 2.75 and critical disorderWc/V = 5.74)
published by Fastenrath [20, 21] for granted, an independent check of the critical exponent
and disorder is necessary.

Three different models [18, 25, 26] have been proposed for numerical studies of the
localization properties in 2d disordered systems with symplectic symmetry. In the present
investigation we use the model suggested by Ando in order to be able to compare with
the above mentioned results for the critical exponent. Also, this model seems to be more
realistic, because it simulates transfer of electrons between s-orbitals via p-orbitals in the
presence of spin–orbit interaction. The latter is responsible for the symplectic symmetry due
to the broken spin-rotational invariance. In the second quantization, the Hamilton operator
on a square lattice with sitesm andn and lattice constanta is

H =
∑
m,σ

εmc
†
m,σ cm,σ +

∑
〈m6=n〉,σσ ′

V (m, σ ; n, σ ′) c†m,σ cn,σ ′ (1)

where the disorder potentialsεm are random numbers distributed between−W/2 andW/2
with probabilityP(ε) = V/W . Periodic boundary conditions are applied in both directions.
The spin–orbit interaction strengthS is defined as the ratioS = V2/(V

2
1 +V 2

2 )
1/2, whereV1

andV2 are matrix elements of the 2× 2 complex transition matricesV (m, σ ; n, σ ′), which
depend on the transfer direction and on spinσ . In the following we chooseS = 0.5 and the
unit of energyV ≡ (V 2

1 + V 2
2 )

1/2 = 1, and only nearest-neighbour transfer is considered.
The twofold degenerate eigenstates are calculated by direct diagonalization using a Lanczos
algorithm.

The eigenvalue statistics are calculated in a given interval [−0.5V , 0.5V ] around the
band centreE/V = 0.0. A careful spectral unfolding procedure was applied to compensate
for possible global variations in the density of states which would disturb the interesting
local correlations. More than 106 eigenvalues were accumulated for each of the parameter
pairs (L,W) with linear system sizeL/a = 15, 20, 25, 30, 35, 40, 100 and disorder
strength ranging fromW/V = 5.4 to 6.8 by calculating up to 3000 realizations of the
disorder potentials. As a scaling variable, we consider the quantity [27]

J0(L,W) =
∫ ∞

0
Q0(s) ds (2)

whereQn(s) for n = 0 is the probability that an energy interval of widths contains
no energy eigenvalue. It is related to the nearest-neighbour level spacing distribution,
P(s) ≡ d2Q0(s)/ds2 [28]. Compared to previous approaches [3, 6, 7] the major advantage
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Figure 1. The scaling variableJ0 versus the disorder W for various linear sizeL of the 2d
square lattice. The inset: the two-branch scaling curveJ0(L/ξ) showing the metal–insulator
transition atJ c0 ≈ 0.571. Different symbols correspond to different disorder.

of our choice is that all calculated neighbouring level spacings are used, because no arbitrary
cut-off parameter is needed.

The spectral correlations of a disordered system undergo a crossover from the Wigner
to the Poisson statistics when increasing the disorder [6, 7, 8]. In the metallic phase,
J0 ≈ 0.522 is well known for infinite symplectic systems from RMT [28], and in the
insulating phase from the Poisson distributionJ0 = 1. As expected, the level statisticJ0 as
a function ofW changes from the RMT result (W < Wc) to the Poisson limit (W > Wc)
continuously for finiteL, but discontinuously in the thermodynamic limit. It exhibits critical
behaviour close to the disorderWc, which separates the extended and localized regimes.
The sign of the finite-size effect is reversed when crossing the fixed point, signalling the
delocalization–localization transition.

Results ofJ0(L,W) as a function of disorder are plotted in figure 1 for six different
system sizes. A point of intersection atW/V ≈ 5.98 is clearly observed. Within numerical
error δW ≈ 0.04, it is consistent with the value reported in [19], but certainly larger than
that from [20]. We find that ourJ0(L,W) results fall between the limiting values mentioned
above with a size independentJ c0 = 0.571± 0.001 at the critical point. Similar behaviour
is also found forJn>1(L,W) by calculating the probabilityQn(s) of the non-zero number



L444 Letter to the Editor

of eigenvaluesn in the intervals. We obtained a scale-invariant sequence of the critical
numbersJ cn , which grow withn, J c1 ≈ 0.976, J c2 ≈ 0.996,. . . , and converge very fast to
unity. In 3d orthogonal systems, an analogous critical sequence [27] was found earlier.

Assuming the validity of the one-parameter scaling hypothesis,J0(L,W) =
f (L/ξ(W)), one can introduce the correlation lengthξ(W) and re-scale the linear size
L so that the data ofJ0 as a function ofL/ξ for consecutiveW overlap with each other.
In approaching the critical point the precision ofξ decreases due to less overlap. Within
statistical accuracy all points fall onto one common curve independently ofL andW . This
yields the two-branched scaling function displayed in the inset of figure 1, whereJ0(L,W)

is plotted versusL/ξ(W). The lower and upper branches indicate the extended and localized
sides of a complete metal–insulator transition, respectively.
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Figure 2. The derivative dJ0/dW atWc as a function of the system sizeL (log–log plot). The
solid line is a linear fit to the raw data. Dashed and dotted lines correspond to the values of the
critical exponentν = 2.05 and 2.75 obtained in [19] and [20], respectively. The inset shows
the disorder dependence of the correlation lengthξ(W).

In order to calculate the critical exponentν one can expand the finite-size scaling
function nearW = Wc,

J0(L,W) ≈ J c0 + A(L/ξ(W))1/ν = J c0 + A′(W −Wc)L
1/ν . (3)

This gives dJ0(L,W)/dW ∝ L1/ν . As soon asWc is detected one can perform the two-
parameter linear fit on a double-log scale, the inverse slope beingν. Figure 2 shows the
derivative dJ0(L,W)/dW atWc/V = 5.98 as a function of the system sizeL from which
a critical exponentν = 2.32± 0.14 can be extracted. Recent calculations of a symplectic
network model yield a similar exponent [29]. As a guide to the eye, two additional lines
are drawn for comparison, the slopes of which correspond to the values ofν obtained by
Ando [18, 19] and Fastenrath [20, 21], using the transfer-matrix method.

If Wc is not known with sufficient accuracy, a four-parameter fitting procedure to
equation (3) is required. By applying aχ2-criterion similar to that from [30, 31], we
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verified that the resultingWc andν do not change considerably. However, their uncertainties
increase as expected,δW = 0.10 andδν = 0.16. Thus, our value ofν is clearly distinct
from those obtained previously. Note that the obtained error barδν does not overlap with
corresponding error bars of thoseν from previous studies. The inset of figure 2 displays the
correlation lengthξ as a function of disorderW . Here,ξ is defined up to a constant factorξ0.
It diverges at the critical disorder in agreement with the power lawξ(W) = ξ0|W −Wc|−ν .
It is generally believed that the value ofν is universal and does not depend on the strength
S of the spin–orbit interaction. It remains to be checked whether this expectation really
holds.

In conclusion, we have investigated the critical properties of the energy level statistics
at the metal–insulator transition of a disordered 2d system with symplectic symmetry. The
scaling function and the critical exponent were calculated using the statistics of spacings
of neighbouring energy eigenvalues that have been obtained numerically. By performing
a finite-size scaling analysis we found a critical exponentν = 2.32 at a critical disorder
Wc/V = 5.98 which is markedly different from those values reported previously. Our value
of ν for the symplectic system is very close to that found in 2d QHE systems, a behaviour
that has been observed previously also for the generalized fractal dimensions.
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